Forklift Starter and Alternator

Forklift Starters and Alternators - A starter motors today is usually a permanent-magnet composition or a series-parallel wound direct current electrical motor with a starter solenoid installed on it. When current from the starting battery is applied to the solenoid, basically through a key-operated switch, the solenoid engages a lever which pushes out the drive pinion which is located on the driveshaft and meshes the pinion using the starter ring gear which is seen on the flywheel of the engine.

The solenoid closes the high-current contacts for the starter motor, that starts to turn. Once the engine starts, the key operated switch is opened and a spring inside the solenoid assembly pulls the pinion gear away from the ring gear. This action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in only one direction. Drive is transmitted in this method through the pinion to the flywheel ring gear. The pinion continuous to be engaged, for example in view of the fact that the driver did not release the key when the engine starts or if there is a short and the solenoid remains engaged. This actually causes the pinion to spin independently of its driveshaft.

The actions mentioned above would prevent the engine from driving the starter. This vital step stops the starter from spinning really fast that it will fly apart. Unless adjustments were made, the sprag clutch arrangement would prevent the use of the starter as a generator if it was utilized in the hybrid scheme mentioned prior. Typically an average starter motor is intended for intermittent utilization which will preclude it being utilized as a generator.

The electrical components are made so as to work for about thirty seconds to stop overheating. Overheating is caused by a slow dissipation of heat is because of ohmic losses. The electrical components are designed to save cost and weight. This is actually the reason nearly all owner's guidebooks utilized for vehicles recommend the operator to pause for at least ten seconds right after each and every ten or fifteen seconds of cranking the engine, when trying to start an engine which does not turn over immediately.

In the early part of the 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Prior to that time, a Bendix drive was used. The Bendix system works by placing the starter drive pinion on a helically cut driveshaft. When the starter motor begins spinning, the inertia of the drive pinion assembly enables it to ride forward on the helix, hence engaging with the ring gear. When the engine starts, the backdrive caused from the ring gear enables the pinion to surpass the rotating speed of the starter. At this point, the drive pinion is forced back down the helical shaft and hence out of mesh with the ring gear.

During the 1930s, an intermediate development between the Bendix drive was made. The overrunning-clutch design that was developed and introduced in the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive has a latching mechanism together with a set of flyweights inside the body of the drive unit. This was much better because the typical Bendix drive utilized to be able to disengage from the ring as soon as the engine fired, even though it did not stay functioning.

The drive unit if force forward by inertia on the helical shaft when the starter motor is engaged and starts turning. Next the starter motor becomes latched into the engaged position. Once the drive unit is spun at a speed higher than what is achieved by the starter motor itself, for example it is backdriven by the running engine, and next the flyweights pull outward in a radial manner. This releases the latch and permits the overdriven drive unit to become spun out of engagement, hence unwanted starter disengagement can be prevented prior to a successful engine start.